Engineering Salinity and Water-Stress Tolerance in Crop Plants:
Getting Closer to the Field

ZVI PELEG,* MARIS P. APSE† AND EDUARDO BLUMWALD*.1

*Department of Plant Sciences, University of California, Davis,
California, USA
†Arcadia Biosciences, Davis, California, USA

I. Introduction ... 407
II. Plant Responses to Drought and Salinity Stress 408
 A. Plants Response to Water Deficit 408
 B. Plant Response to Salinity Stress 408
 C. Plant Adaptations to Abiotic Stress 408
 D. New Technologies to Study Plant Response to Abiotic Stress 409
III. Engineering of Drought and Salinity-Tolerant Crop Plants 410
 A. Genes Involved in Osmoregulation 410
 B. Genes for Mitigating Oxidative Damage 415
 C. Genes for Ionic Balance ... 418
 D. Regulatory and Signalling Genes 420
IV. Conclusions and Perspectives .. 431
Acknowledgements ... 432
References ... 432

ABSTRACT

Abiotic stress is the primary cause of crop-plant loss worldwide. Drought and salinity stress are the major environmental challenges faced by agriculture. Improving yield production and stability under stressful environments is needed to fulfil the food

1Corresponding author: E-mail: eblumwald@ucdavis.edu
demand of the ever-growing world population. Numerous genes associated to plant response(s) to drought and salinity stress have been identified and characterized, in most cases, in the model plant Arabidopsis. However, while many of these genes are potential candidates for improving tolerance to abiotic stress, only a small proportion were transferred into crop plants. Further, transgenic crop plants overexpressing the genes of interest were, in most cases, tested under artificial conditions in the laboratory or controlled greenhouse. Thus, while many reports on drought and salinity tolerance in transgenic plants have been published recently, there is urgent need to test these traits under field conditions. In this chapter, we discuss recent advances in engineering drought and salinity tolerance in crop plants with emphasis on yield and the needs to close the gaps between the laboratory and the field conditions.

ABBREVIATIONS

ABA abscisic acid
CAT catalase
CDPK calcium-dependent protein kinase
CIPK calcineurin B-like protein-interacting protein kinase
CK cytokinin
DREB dehydration-responsive element binding protein
ERF ethylene responsive factor
GB glycine betaine
GST glutathione S-transferase
IPT isopentenyltransferase
LEA late embryogenesis abundant
MAPK mitogen-activated protein kinase
MtlD mannitol-1-phosphate dehydrogenase
NAM no apical meristem
P5CS D1-pyrroline-5-carboxylate synthetase
PEG polyethylene glycol
PIP plasma membrane intrinsic protein
RLK receptor-like kinase
ROS reactive oxygen species
RWC relative water content
SOD superoxide dismutase
SOS salt overly sensitive
TE transpiration efficiency
TIP tonoplast intrinsic protein
TF transcription factor
TPS trehalose-6-phosphate synthase
OA osmotic adjustment
WUE water-use efficiency
I. INTRODUCTION

Crop plants are often grown under unfavourable environmental conditions that prevent the full expression of their genetic yield potential. The most frequently occurring abiotic stress conditions with adverse effects on crop yield are water, deficit or excess; ions, deficit or excess; temperature, low or high; and light, deficit or excess. The ever-increasing human population, concomitant with loss of agricultural land (due to urbanization processes) and diminishing water availability (associated with climate change) pose serious challenges to world agriculture (reviewed by Mittler and Blumwald, 2010). A significant increase (an estimated 50%) in grain yield of major crop plants such as rice (*Oryza sativa* L.), wheat (*Triticum aestivum* L.) and maize (*Zea mays* L.) is required to fulfil the food supply requirements for the projected population by 2050 (Godfray *et al*., 2010). The average production of major U.S. crops (corn, wheat, soybean, sorghum, oat, barley, potato and sugar beet) is only 21.6% of the highest yields attained under optimal conditions (Boyer, 1982). Diseases, pests and weed competition losses account for 4.1% and 2.6% yield reductions, respectively, with the remainder of the yield reduction (69.1%) attributed to unfavourable physicochemical (abiotic) environments induced by problematic soils and erratic climate patterns. Certainly, some of these losses are caused by inherently unfavourable environments and some by suboptimal management practices by farmers, often due to economic constraints or lack of training. Nevertheless, there is no doubt that a large fraction of potential crop productivity is lost to abiotic stress factors.

Plants respond to abiotic stresses at multiple levels such as molecular, cellular, tissue, anatomical, morphological and whole-plant physiological levels (Bartels and Sunkar, 2005; Bray, 1993, 1997; Chaves *et al*., 2003; Munns, 2002; Munns and Tester, 2008; Witcombe *et al*., 2008). The response to stress depends on the duration and severity of the event, as well as the age and developmental stage of the plant, which varies with the species and genotype level (Bray, 1997). For crop plants, tolerance to abiotic stresses is measured by yield loss rather than survival. Typically, early plant establishment (germination and seedling) and the reproductive stage are the most sensitive in determining yield under stress (Barnabas *et al*., 2008). However, a large segment of the research on abiotic stress in model systems (particularly *Arabidopsis*) in the past has focused primarily on the vegetative phase and strived to identify survival phenotypes. This has hindered our ability to readily translate the discoveries into improved yield in crop plants.
II. PLANT RESPONSES TO DROUGHT AND SALINITY STRESS

A. PLANTS RESPONSE TO WATER DEFICIT

Among the various abiotic stress conditions, water deficit is the most devastating factor (Araus et al., 2008; Boyer, 1982). About one-third of the world’s arable land suffers from chronically inadequate water availability for agriculture, and in virtually all agricultural regions, crop yields are periodically reduced by drought (Bruce et al., 2002). While currently ~80% of the world’s useable water resources are consumed by irrigated agriculture (Condon et al., 2004), within a few decades, the expanding world population will require more water for domestic, municipal, industrial and environmental needs (Hamdy et al., 2003). This trend is expected to accentuate due to global climatic change and increased aridity (Vorosmarty et al., 2000). Thus, to meet the projected food demands, more crop per drop is required (Condon et al., 2004).

B. PLANT RESPONSE TO SALINITY STRESS

Salinity (see definition of saline and sodic soils; Richards, 1954) is a major constraint on crop-plant productivity (reviewed by Apse and Blumwald, 2002; Flowers, 2004; Munns and Tester, 2008; Witcombe et al., 2008). More than 800 million hectares of land throughout the world are salt affected, which accounts for 6% of the world total land area (Munns and Tester, 2008). In most cases, salinity results from natural causes (salt accumulation over long periods of time). In addition, a significant portion of the cultivated agricultural land is becoming saline due to deforestation or excess irrigation and fertilization (Shannon, 1997). Current estimates indicate that 20% of the roughly 230 million hectares of irrigated land is affected by salinity. Given that a third of the food production comes from irrigated agriculture, salinity is becoming a serious problem for crop-plant productivity.

C. PLANT ADAPTATIONS TO ABIOTIC STRESS

Plant resistance to stress conditions may arise from escape, avoidance or tolerance strategies (Levitt, 1972). Escape relies on successful completion of reproduction before the onset of severe stress (i.e. developmental plasticity), achieved by early flowering and/or short growth duration (Mooney et al., 1987). Avoidance involves the prevention or decreasing the impact of the stress on the plant, such as minimizing water loss and maximizing water
uptake (Chaves et al., 2003) or exclusion of salt ions, a feature observed in halophytes (Munns and Tester, 2008). Tolerance relies on the inherent ability of the plant to sustain growth (likely at a reduced rate) even when the conditions are unfavourable for the maintenance of basic plant processes. This strategy involves coordination of physiological and biochemical alterations at the cellular and molecular levels, such as osmotic adjustment (Morgan, 1984) and the sequestration of ion in the plants, in the vacuole or leaf sheath and/or older leaves (Mimura et al., 2003). In most cases, plants subjected to stress conditions combine a suite of responses, exhibiting a number of physiological and biochemical responses at the molecular, cellular and whole-plant level (Bohnert et al., 1995; Bray, 1993, 1997; Chaves et al., 2003).

D. NEW TECHNOLOGIES TO STUDY PLANT RESPONSE TO ABIOTIC STRESS

New technologies are providing opportunities to address the challenging problem of maintaining high-yield crop production under stressful and changing climates. The information provided by high-resolution transcript profiling, the identification of large-scale specific protein networks and their association with the plant responses to environmental perturbations are allowing the application of a systems-level approach to uncover the bases of plant responses to environmental changes. Model plants, such as Arabidopsis thaliana, Brachypodium distachyon and Medicago truncatula, have been and will continue to offer insights into the genetic and biochemical basis of abiotic stress adaptations (Bohnert et al., 2006; Hirayama and Shinozaki, 2010). Further, the identification of stress-related genes and pathways has been facilitated by introducing new tools and resources developed in these model plants. Numerous genes related to plant response to drought and salinity stress have been identified and characterized (Ashraf, 2010; Pardo, 2010; Shinozaki and Yamaguchi-Shinozaki, 2007; Umezawa et al., 2006). Many of the genes so identified are considered as potential candidates for improving tolerance to abiotic stress. In the majority of cases, these genes are overexpressed in the target plant(s), whether with a strong constitutive promoter or a stress-responsive promoter. Early generations (T₁–T₃) are screened for responses to stresses to assess the efficacy of the construct. However, the vast majority of these studies were conducted under laboratory conditions (i.e. dehydration) in the vegetative phase (i.e. seedling, or plate assays) using artificial stress (e.g. PEG, mannitol), with very high concentration (i.e. osmotic shock) and for short periods (i.e. hours). Moreover, most of these studies showed stress tolerance and/or survival, but not the effects of the different stress conditions on plant productivity (Parry et al., 2005).
Under rain-fed drought prone agriculture, water stress at the reproductive stage is the most prevalent problem as in most rain-fed ecosystems, the crop season’s rains diminish towards flowering and harvest time (Blum, 2009). Thus, more emphasis should be given to the study of the response of crop plants to abiotic stress at the reproductive stage and under field conditions.

III. ENGINEERING OF DROUGHT AND SALINITY-TOLERANT CROP PLANTS

Plant responses to abiotic stress affect all aspects of plant physiology and metabolism, leading to severe yield losses. Thus, tolerance mechanisms depend on the prevention or alleviation of cellular damage, the re-establishment of homeostatic conditions and the resumption of growth. Discovering and understanding the molecular/genetic basis of these tolerance components have been the focus of crop biotechnology in the past 2 decades. Despite these enormous research efforts, the role of very few genes in enhancing abiotic stress tolerance has been demonstrated under field conditions. However, this is expected to change primarily because research is increasingly focused on high yields under stress rather than plant survival. Other factors include better facilities for testing the transgenic materials and the increasing acceptance of genetically engineered plants. Genetic engineering of candidate genes for abiotic stress was found to be successful in model plants growing under controlled conditions and provided insights on the role of these genes in key physiological and biochemical processes (reviewed by Pardo, 2010; Umezawa et al., 2006; Vinocur and Altman, 2005). In this chapter, we have focused on efforts towards the improvement of drought and salinity stresses tolerance in crop plants with emphasis on field trials.

A. GENES INVOLVED IN OSMOREGULATION

The biosynthesis and accumulation of compatible solutes in is an adaptive response of plants to both drought and salinity stress (Munns, 2002). Compatible solutes are non-toxic small molecules which do not interfere with normal cellular metabolism. A variety of substances have been identified in plants as compatible solutes, including sugars (trehalose, fructan), sugar alcohols (galactinol, trehalose and mannitol), amino acids (proline) and amines (glycine betaine, GB). There are many examples in the literature of increasing compatible solute synthesis as a strategy to improve tolerance to abiotic stress. In most cases, tolerance to either water or salinity stress has been reported as comparisons of plant recovery from treatments of rapid
drying or high salinity. Survival, protection of photosynthetic activity, degree of lipid peroxidation and membrane leakage are common parameters for assessing the effects of increased synthesis of compatible solutes. In rare cases, evaluations are made over longer term growth, but even so, effects on yield are rarely reported, and we are aware of no reports of field performance under both normal and stress conditions of transgenic plants engineered to produce increased amounts of compatible solutes. In this section, we highlight some of the promising candidate technological approaches that remain to be substantiated with field testing for yield performance.

1. Proline

The accumulation of proline in response to osmotic stress has been reported in many plant species (Delauney and Verma, 1993). Proline is believed to act as a store of carbon and nitrogen, as a scavenger of reactive oxygen species (ROS), a molecular chaperone and even as a signal for other adaptive responses to abiotic and biotic stresses (Verbruggen and Hermans, 2008). Transformation of chickpea (Cicer arietinum) with the osmoregulatory gene \(P5CSF129A \) (under 35S promoter) encoding the mutagenized \(\Delta^1 \)-pyrroline-5-carboxylate synthetase (\(P5CS \)) for the overproduction of proline showed significantly higher proline accumulation. However, the transgenic plants resulted only in a modest increase in transpiration efficiency (TE), suggesting that enhanced proline had little bearing on the components of yield in chickpea (Bhatnagar-Mathur et al., 2009). Wheat plants overexpressing \(P5CS \) (under the control of a stress-induced promoter complex-AIPC) showed accumulation of proline, which resulted in improved tolerance to water deficit (Vendruscolo et al., 2007). Likewise, transgenic rice overexpressing \(P5CS \) showed significantly higher tolerance to salinity and water stress produced in terms of faster growth of shoots and roots (Su and Wu, 2004). Rice plants overexpressing the \(ZFP252 \) gene, resulted in increased amount of free proline and soluble sugars, elevated the expression of stress defence genes and enhanced tolerance to salt and drought stresses (Xu et al., 2008). Soybean plants expressing \(\Delta^1 \)-pyrroline-5-carboxylate reductase (\(P5CR \)) under control of an inducible heat shock promoter were found in greenhouse trials to accumulate proline without deleterious effects and to retain higher \(\text{RWC}_a \) and higher glucose and fructose levels than the antisense and control plants (de Ronde et al., 2004). Field trials have been conducted in South Africa with apparent yield advantages for the proline accumulating soybean transgenic plants under reduced watering conditions and heat stress (ARC Research Highlights, 2006). However, these results have yet to appear in a scientific peer-reviewed publication.
2. **Mannitol**

Mannitol is accumulated as a compatible solute in many plants and organisms of other kingdoms, although its accumulation in celery is often cited, perhaps because in celery up to half of fixed CO₂ is converted to mannitol (Stoop et al., 1996). The overexpression of **mannitol-1-phosphate dehydrogenase** (the *Escherichia coli* locus **mtlD**) resulted in the accumulation of a small amount of mannitol and also in the improved tolerance to salinity and drought in *Arabidopsis* (Thomas et al., 1995) and tobacco (Karakas et al., 1997). In wheat, where mannitol is normally not synthesized, constitutive expression of the **mtlD** (under the control of the *ZmUbi-1* promoter) improved growth and tolerance to water stress and salinity, although growth in the absence of stress was accompanied with sterility, stunted growth and leaf curling at levels of mannitol higher than 0.7 µmol/gFW (Abebe et al., 2003). As with other compatible solutes discussed above, the concentration of mannitol in the transgenic plants that showed better response to water and salinity stress at the whole-plant level was too small to be osmotically relevant. Rather, the ameliorative effect of mannitol was likely to be exerted through the scavenging of hydroxyl radicals and stabilization of macromolecular structures (see Abebe et al., 2003, and references therein).

3. **Glycine betaine**

GB, a fully N-methyl-substituted derivative of glycine, accumulates in the chloroplasts and plastids of many species such as Poaceae, Amaranthaceae, Asteraceae, Malvaceae and Chenopodiaceae, in response to drought and salinity. In some species, GB accumulates to concentrations that would contribute to cellular osmotic pressure (Munns and Tester, 2008), but in most cases, plants accumulate less than this amount. At lower concentrations, GB stabilizes the quaternary structures of enzymes and complex proteins and protects the photosynthetic machinery via ROS scavenging (Chen and Murata, 2008). Transgenic maize expressing the **betA** locus of *E. coli*, encoding choline dehydrogenase, showed more GB accumulation under drought and salinity in the field (Quan et al., 2004). Under drought stress, imposed at the reproductive stage, transgenic maize lines that showed the highest amounts of GB accumulation (between 5.4 and 5.7 µmol/gFW) also had a 10–23% higher yield than wild-type plants under the same treatment (Quan et al., 2004). Quantitative data describing yields in the field in the absence of stress were not reported. Cotton plants (*Gossypium hirsutum* L.) expressing **betA** were also described as more drought tolerant (Lv et al., 2007). Under water-stress conditions, the transgenic cotton lines had higher RWC, OA, increased photosynthesis, reduced ion leakage and lower lipid membrane peroxidation than wild-type plants. As with the transgenic maize...
(Quan et al., 2004), GB levels in the transgenic cotton were up to threefold greater than that measured in the wild-type controls. Yield was tested in pots in the greenhouse and one line showed a reduced loss of yield on water-stress treatment at anthesis. Recently, betA was transformed (under control of a maize ubiquitin promoter) into bread wheat and resulted in improved salt tolerance (He et al., 2010). Under 200 mM NaCl treatment, the transgenic wheat seedling (five-leaf stage) had higher levels of GB and chlorophyll, lower Na\(^+\)/K\(^+\) ratios and solute potential, and less cell membrane damage. Further, in a field experiment under saline conditions (0.42–0.47% NaCl w/w), the transgenic plants dramatically outyielded the wild-type control plants (He et al., 2010).

A CMO gene (AhCMO), cloned from Atriplex hortensis, was introduced into cotton, showing enhance resistance to salinity stress (Zhang et al., 2009). GB levels in the leaves of the transgenic cotton plants were on the high end of the range of GB reported in transgenic plants (43 \(\mu\)mol/gFW). While yield in the absence of stress was approximately 10% lower in the transgenic lines, these were T\(_3\) generation materials that were being compared to untransformed controls. At least one backcross to the wild type would be useful to make comparisons with wild type and to minimize tissue culture effects in the transgenic lines. Seed cotton yields of the transgenic lines were 20–30% higher than wild type in three seasons of field trials on what was reported as saline soil (Zhang et al., 2009); however, no description of the salinity level was provided in the publication. Transgenic potato (Solanum tuberosum L.) plants, developed via the introduction of the bacterial choline oxidase (codA) gene, expressed under the control of an oxidative stress-inducible SWPA2 promoter and directed to the chloroplast with the addition of a transit peptide at the N-terminus, showed enhanced tolerance to NaCl and drought stress at the whole-plant level (Ahmad et al., 2008). While not yet tested under field conditions, greenhouse testing with transgenic potato plants having relatively low levels of GB (0.9–1.4 \(\mu\)mol/gFW) showed greater dry weight accumulation after recovery from 150 mM NaCl treatment and water withholding stress treatments. Recently, wheat plants overexpressing a BADH gene, encoding betaine aldehyde dehydrogenase (BADH), were shown to be more tolerant to drought and heat, by improving the photosynthesis capacity of flag leaves (Wang et al., 2010).

4. Trehalose

Trehalose (\(\alpha\)-d-glucopyranosyl-(1→1)-\(\alpha\)-d-glucopyranoside) is a nonreducing disaccharide composed of two molecules of glucose that functions as a compatible solute in the stabilization of biological structures under abiotic stress in bacteria, fungi and invertebrates (Goddijn and van Dun, 1999).
Trehalose is not thought to accumulate to detectable levels in most plants, with exception of the desiccation-tolerant “resurrection plants”. However, there is thought to be a signalling role for trehalose at least in part through its inhibition of SNF-1-related kinase (SnRK1), which results in an up-regulation of biosynthetic reactions supporting photosynthesis and starch synthesis, among others (reviewed by Iturriaga et al., 2009). Transgenic tomatoes (Solanum lycopersicum) overexpressing the yeast trehalose-6-phosphate synthase (TPS1) gene (under control of 35S promoter) showed higher tolerance to salt, drought and oxidative stresses (Cortina and Culianez-Macia, 2005). The transgenic plants exhibited pleiotropic changes such as thick shoots, rigid dark-green leaves, erected branches and an aberrant root development and higher chlorophyll and starch content compared to wild-type plants. The alteration of soluble carbohydrate content suggests that the stress tolerance phenotype in trehalose genetically engineered plants could be partly due to modulation of sugar sensing and carbohydrate metabolism (Fernandez et al., 2010). In rice, the overexpression of a synthetic fusion of E. coli trehalose biosynthetic genes (otsA and otsB), under the control of tissue-specific 99(rbcS) and rice stress-dependent promoter (abscisic acid (ABA)-inducible), resulted in sustained plant growth, less photo-oxidative damage and more favourable mineral balance under salt and drought stress conditions. The transgenic rice plants accumulate up to 3–10 times more trehalose than the wild-type plants (Garg et al., 2002). A similar fusion construct was made with the constitutive promoter maize ubiquitin, and used to transform rice (Jang et al., 2003). Incredibly, the transgenic rice accumulated up to 1000 μg/g FW trehalose, which was attributed to the increased efficiency of the fusion protein over two separate enzymes (Jang et al., 2003). Even more surprising was the absence of abnormal developmental and morphological phenotypes, given the high level of trehalose and the occurrence of such deleterious phenotypes in Arabidopsis, potato and tobacco (Goddijn and van Dun, 1999). Jang et al. (2003) suggested that the fusion protein would reduce the amount of the trehalose-6-phosphate intermediate, which is the metabolite responsible for signalling cytosolic carbon status and regulation of chloroplastic starch synthesis (reviewed by Paul et al., 2008). However, constitutive expression of such fusion proteins in potato (Jang et al., 2003) and alfalfa (Suarez et al., 2009) results in a range of stunted plant growth phenotypes. It may be the case that sensitivity to trehalose and the synthetic pathway intermediates are different for monocots and dicots. The use of inducible promoters has been an approach that appears to circumvent the deleterious effects of trehalose synthesis and accumulation in alfalfa (Suarez et al., 2009). A fusion of yeast trehalose biosynthetic genes, TPS1 and TPS2, was driven either by the constitutive
strong promoter 35S or by the drought-inducible promoter rd29A. Stunting of growth in the absence of stress was apparent for the alfalfa plants harbouring the constitutive expression of the fusion gene, but was not apparent for plants with the inducible construct. Both rice and alfalfa were tested in controlled growth conditions for tolerance to water and salinity stresses and were found to outperform the wild-type controls (Jang et al., 2003; Suarez et al., 2009). Though promising as tools for the application to abiotic stress tolerance in agriculture, we are not aware of field trials or testing of this technology as yet.

5. Osmotin genes
Osmotin is a stress-responsive multifunctional 24-kDa protein with roles in plant response to fungal pathogens and osmotic tolerance. Overexpression of a heterologous osmotin-like protein (under control of 35S) in potato (S. tuberosum) improved tolerance to salinity stress (Evers et al., 1999). The tobacco osmotin gene (driven by the CaMV 35S promoter) was transformed into tomato and was reported to enhance tolerance to salt and drought stresses (Goel et al., 2010). Estimation of several physiological traits such as RWC, chlorophyll, leaf proline, leaf expansion and plant height was observed in transgenic lines as compared to the wild-type plants. Yield of potted plants grown in the greenhouse showed a dramatic advantage for the transgenic osmotin tomatoes after recovery from 150 mM NaCl treatment for 3 weeks. Strawberry (Fragaria × ananassa Duch) plants overexpressing osmotin gene of Nicotiana tabacum (driven by the CaMV 35S promoter) showed increased accumulation of proline and higher chlorophyll content compared with wild-type plants (Husaini and Abdin, 2008). Under salinity stress conditions, transgenic plants perform better than the wild-type control plants; however, under normal conditions, growth rate was slower.

B. GENES FOR MITIGATING OXIDATIVE DAMAGE
Another physiological and biochemical cellular component common to a suite of abiotic stresses including drought and salt stress is oxidative stress. Oxidative stress involves the generation of ROS during stress. The most common ROS are hydrogen peroxide (H$_2$O$_2$), superoxide, the hydroxyl radical and singlet oxygen. Under normal conditions, ROS are continuously produced through cellular metabolism and plant cells are well equipped with antioxidants and scavenging enzymes to keep their levels low (Jaspers and Kangasjärvi, 2010). Under stress conditions, increased ROS production results from an increased production of superoxide due to reduced CO$_2$ availability and the over reduction of the photosynthetic electron transport.
Increased photorespiration also generates more H$_2$O$_2$, which, if not adequately balanced by scavenging molecules and enzymes, can lead to further generation of ROS via lipid peroxidation. Oxidative damage is believed to be a consequence of inadequate ROS scavenging, which might be mitigated by the inducible or constitutive overexpression of enzymes that can reduce ROS under stress.

McKersie et al. (1996) reported that alfalfa constitutively expressing a tobacco MnSOD directed at either chloroplasts or mitochondria had improved survival and yield over 3 years of field trials, relative to the untransformed control plants. Increased SOD activity in the transgenic plants was accompanied by increased photosynthetic efficiency (F_v/F_m) and shoot regrowth during water-deficit stress treatments in controlled growth conditions. A wheat mitochondrial MnSOD, regulated by either constitutive (35S) or the stress-inducible (COR78) promoter, was used to transform canola (Gusta et al., 2009). In both constitutive and stress-inducible MnSOD transgenic canola plants, SOD activity was increased by 25–45% over that in control plants, and survival and recovery from water withholding was greater. Field experiments showed that the MnSOD transgenic canola had superior germination and emergence, as well as earlier time to flowering; yield testing is to occur in future trials using these transgenic plants (Gusta et al., 2009).

Improving the antioxidant capacity in plants has also been accomplished indirectly, with the overexpression of proteins involved in signalling upstream of ROS scavenging. Recently, a rice gene coding for a receptor-like kinase (RLK) was reported to improve the drought and salt tolerance (DST) of transgenic plants overexpressing the RLK (OsSIK1) (Ouyang et al., 2010). The transgenic plants had higher activity of peroxidases, SOD and catalase (CAT) during stress, as well as reduced stomatal density. The improved tolerance to osmotic stress treatments (using very high concentrations of NaCl or water withholding) of the transgenic plants may be attributed to reduced stomatal density as much as to the increased antioxidant activity (Ouyang et al., 2010). What cannot be determined from the data provided by Ouyang et al. (2010) is whether the changes in antioxidant activity are dependent on the changes in stomatal density, or vice versa, or if the two are independent. Overexpression of the Arabidopsis gene GF14$, which encodes a 14-3-3 protein that interacts with proteins involved in numerous metabolic processes, including antioxidant activity, demonstrated a “stay-green” phenotype and improved tolerance to moderate water stress in cotton (Yan et al., 2004).

CAT is one of the major endogenous enzyme antioxidants. It catalyses H$_2$O$_2$ decomposition and is up-regulated at the transcriptional level upon
exposure to high salinity stress. In cyanobacteria, introduction of a CAT gene of *E. coli*, katE, was found to reduce ROS production under salt stresses and confer salt tolerance (Kaku *et al.*, 2000). Transgenic rice plants’ constitutive overexpression of the katE gene showed improved growth under salinity stress (Nagamiya *et al.*, 2007). Plants were evaluated at the vegetative and reproductive stages for salt tolerance. T1 seedlings were soaked in 0, 50, 100, 150, 200, 250, 300, 400, 500 or 600 mM NaCl and surviving rate (green tissue) was recorded. In addition, flowering T1 transgenic lines grown under normal conditions were soaked in 250 mM NaCl solution for 14 days. The transgenic rice seedlings showed improved growth under high salinity (250 mM), and were able to form flower and produce seeds in the presence of 100 mM NaCl. CAT activity in the transgenic rice plants was 1.5- to 2.5-fold higher than in nontransgenic rice plants.

Pyramiding of ROS scavenging genes may provide more effective tolerance of oxidative stress resulting from drought or salinity. Two genes (from *Suaeda salsa*) coding GST (glutathione S-transferase, EC 2.5.1.18) and CAT (EC 1.11.1.6) were transformed under the control of a constitutive promoter into rice plants. Transgenic rice seedlings showed a marked enhanced tolerance to salinity and oxidative stresses (Zhao and Zhang, 2006). Expression of three antioxidant enzymes, copper zinc superoxide dismutase (CuZnSOD), ascorbate peroxidase (APX) and dehydroascorbate (DHAR) reductase, in tobacco chloroplasts resulted in a higher tolerance to oxidative stress induced by salinity stress (Lee *et al.*, 2007). These studies suggested that the simultaneous expression of multiple antioxidant enzymes could be more effective than the expression of single genes for developing transgenic plants with enhanced tolerance to abiotic stresses.

ROS, and H2O2 in particular, also play a role in the signalling pathways involved in the adaptation to the stress response (Miller and Mittler, 2006). Samis *et al.* (2002) combined the mitochondrial and chloroplastic SOD expression by crossing the transgenic alfalfa plants that had shown superior field performance in earlier trials (McKersie *et al.*, 1996). The plants carrying both constructs had higher SOD activity than either of the sibling controls that carried only one of the *MnSOD* transgenes, but biomass production in the field of the plants carrying both genes was reduced, relative to the single gene siblings (Samis *et al.*, 2002). The authors suggested that there might be an optimum level of SOD activity, above which processes such a H2O2 signalling might be impaired. The use of inducible promoters for driving the expression of antioxidant enzymes is also being tested as an alternative to constitutive expression. In rice, transformation of chloroplast-targeted manganese superoxide dismutase isolated from pea (*MnSOD*) under the control of an oxidative stress-inducible *SWPA2*
promoter resulted the improvement of indicators of oxidative stress tolerance in T1 plants tested in the greenhouse (Wang et al., 2005a).

C. GENES FOR IONIC BALANCE

In most saline soils, Na\(^+\) and Cl\(^-\) are the predominant ions in the soil solution. At sufficiently high concentrations, both ions contribute to an unfavourable osmotic gradient between the soil solution and the plant roots. Both ions also cause ion-specific toxicity when accumulated in salt-sensitive plants. And while it is clear that the exclusion of Na\(^+\) or Cl\(^-\), or both, is correlated with improved salinity tolerance in some species (and the accumulation of both with others), the state knowledge of Na\(^+\) transport mechanisms is more advanced than that for Cl\(^-\) transport (Teakle and Tyerman, 2010).

1. Decreasing Na\(^+\) uptake

In both glycophytes and halophytes, the net uptake of sodium into the roots is the sum of sodium influx and efflux. The negative electrical membrane potential difference at the plasma membrane of root cells (≈ 140 mV) favours the passive transport of sodium into root cells, and especially so when sodium concentrations increase in the soil solution. The entry of sodium into root cells is mediated by uniporter or ion channel-type transporters, like HKT, LCT1 and NSCC (reviewed in Plett and Moller, 2010). The reduction of Na\(^+\) uptake might be accomplished by decreasing the number or activity of these transporters in the roots. Reduction of TaHKT2;1 expression in wheat by antisense suppression resulted in lower net sodium uptake of transgenic roots and higher fresh weight of plants grown under salinity stress in controlled growth conditions (Laurie et al., 2002). Similarly, Arabidopsis T-DNA knockout mutants of AtCNGC3, a cyclic nucleotide gated channel which catalyses Na\(^+\) uptake, had lower net influx of Na\(^+\) and were more tolerant to salinity at germination (Gobert et al., 2006).

The efflux of sodium from the roots is an active process, which is presumed to be mediated by plasma membrane Na\(^+\)/H\(^+\) antiporters. These secondary transporters use the energy of the proton gradient across the plasma membrane to drive the active efflux of sodium from the cytosol to the apoplast. The Na\(^+\)/H\(^+\) antiporter, SOS1 (identified in a mutant screen as salt overly sensitive 1), is the only Na\(^+\) efflux protein at the plasma membrane of plants characterized so far. The overexpression of AtSOS1, a plasma membrane-bound Na\(^+\)/H\(^+\) antiporter, improved the ability of the Arabidopsis transgenic plants to grow in the presence of high NaCl concentrations (Shi et al., 2003). And the rice orthologue, OsSOS1, is able to complement the Arabidopsis sos1
mutant (Martinez-Atienza et al., 2007). The SOD2 (Sodium2) gene was identified in yeast, Schizosaccharomyces pombe, as a Na+/H+ antiporter on the plasma membrane involved in salt tolerance. Transformation of rice with the SOD2 gene (under 35S promoter) resulted in accumulation of more K+, Ca2+, Mg2+ and less Na+ in the shoots compared with wild type (Zhao et al., 2006b). The transgenic rice plants were able to maintain higher photosynthesis level and root proton exportation capacity, whereas reduced ROS generation. Although yield data were not reported, the trials were conducted outdoors, which is the closest to field level study of a crop plant for this approach in the literature.

2. Decreasing root to shoot translocation of Na+

The accumulation of sodium in shoots occurs via the translocation of sodium from the roots along the transpirational stream. The removal of sodium from the xylem, which reduces the rate of sodium transfer to the shoot tissue, has been shown to be mediated by members of the HKT gene family (reviewed in Plett and Moller, 2010). AtHKT1;1 in Arabidopsis, OsHKT1;5 in rice, and HKT1;4 in wheat are all critical in reducing Na+ shoot concentrations by transporting Na+ from the xylem into the root stele (reviewed in Hauser and Horie, 2010). One strategy for improving salinity tolerance is to increase the expression of such genes to further reduce sodium concentrations in the xylem (Plett et al., 2010). The overexpression of AtHKT1;1 under the control of the constitutive promoter CaMV35S leads to increased salt sensitivity, presumably because Na+ fluxes are increased in inappropriate cells and tissues (Moller et al., 2009). However, when expressed under the control of a promoter directing expression in root epidermal and cortical cells, both in rice and in Arabidopsis, HKT1;1 overexpression causes an increase in root cortical sodium, a decrease in shoot sodium and a higher accumulation of fresh weight during the course of the experiment (Plett et al., 2010).

3. Sequestering Na+

The accumulation of Na+ ions into vacuoles through the operation of a vacuolar Na+/H+ antiporter provided an efficient strategy to avert the deleterious effect of Na+ in the cytosol and maintain osmotic balance by using Na+ (and Cl−) accumulated in the vacuole to drive water into the cells (Apse et al., 1999; Apse and Blumwald, 2002). Transgenic plants overexpressing an Arabidopsis vacuolar Na+/H+ antiporter, AtNHX1, exhibited improved salt tolerance in Brassica napus (Zhang et al., 2001), tomato (Zhang and Blumwald, 2001), cotton (He et al., 2005), wheat (Xue et al., 2004), beet (Yang et al., 2005) and tall fescue (Zhao et al., 2007). The transformation of an orthologue gene (AgNHX1) from halophytic plant Atriplex gmelini into
rice improved salt tolerance of the transgenic rice (Ohta et al., 2002). Maize
plants overexpressing rice OsNHX1 gene accumulated more biomass, under
200 mM NaCl in greenhouse (Chen et al., 2007). Moreover, under field trial
conditions, the transgenic maize plants produced higher grain yields than the
wild-type plants. Transformation of another Na+/H+ antiporter family
member, AtNHX3 (from Arabidopsis), in sugar beet (Beta vulgaris L.)
resulted in increased salt accumulation in leaves, but not in the storage
roots, with enhanced constituent soluble sugar contents under salt stress
condition (Liu et al., 2008).

The introduction of genes associated with the maintenance of ion homeo-
statics in halotolerant plant into crop plants confirmed salinity tolerance. The
yeast gene HAL1 was introduced into tomato (Gisbert et al., 2000), water-
melon (Citrullus lanatus (Thunb.); Ellul et al., 2003) and melon (Cucumis
melo L.; Bordas et al., 1997), which confirmed higher level of salt tolerance,
with higher cellular K+ to Na+ ratio under salt stress. Likewise, the intro-
duction of the yeast HAL2 gene into tomato resulted in improved root
growth under NaCl conditions, contributing to improved salt tolerance
(Arrillaga et al., 1998). Overexpression of HAL3 (from S. cerevisiae) homo-
logue NtHAL3 in tobacco increased proline biosynthesis and the enhance-
ment of salt and osmotic tolerance in cultured tobacco cells (Yonamine
et al., 2004).

The electrochemical gradient of protons across the vacuolar membrane is
generated by the activity of the vacuolar H+-translocating enzymes, H+-ATPase and H+-pyrophosphatase. Increasing vacuolar H+ pumping might
be required to provide the additional driving force for vacuolar accumulation
via sodium/proton antiporters. A gene coding for a vacuolar H+-pyro-
phosphatase proton pump (AVP1) from Arabidopsis was overexpressed in toma-
to (Park et al., 2005), cotton (Pasapula et al., 2010) and rice (Zhao et al.,
2006a) and induced improved growth during drought and salt stress. Interest-
ingly, the overexpressed AVP1 resulted in a more robust root system
which could possibly improve the plants ability to absorb more water from
the soil (Pasapula et al., 2010).

D. REGULATORY AND SIGNALLING GENES

1. DREB/CFB

Dehydration-responsive element (DRE)/C-repeat (CRT) was identified in
Arabidopsis, a cis-acting element regulating gene expression in response to
dehydration (drought, salinity and cold stress; Baker et al., 1994;
Yamaguchi-Shinozaki and Shinozaki, 1994). Several DRE-binding proteins
(DREB)/CRT-binding factor (CBF) were isolated and identified as key
players in dehydration (drought, salinity and cold stress) responsive gene
expression (Yamaguchi-Shinozaki and Shinozaki, 1994). Using transgenic
approaches, the DREB/CRF signalling pathway is one of the most studied in
numerous plant species. The overexpression of these genes activated the
expression of many downstream genes with the DRE elements in their
promoters, and the resulting transgenic plants showed improved stress toler-
ance (Agarwal et al., 2006). In Arabidopsis, two classes of DREBs were
isolated: DREB1 expression was found to be highly up-regulated during
cold stress, and DREB2 expression was responsive to drought and salinity.

Transgenic rice lines overexpressing OsDREB1A and OsDREB1B under
the control of a constitutive ubiquitin promoter showed more tolerance to
drought and salinity conditions (in term of survival rate); however, under
normal conditions, the transgenic lines showed reduced growth (Ito et al.,
2006). In this experiment, rice seedlings (17–19 days) that were grown in very
small pots under continuous light were exposed to high salinity (250 mM
NaCl, 3 days) or drought (withholding water for 9 days), followed by re-
watering. While drought associated traits (as proline) were measured, no
data on yield were reported. Further, the transgenic rice plants overexpres-
sing OsDREB1 or DREB1 showed growth retardation under normal growth
conditions (Ito et al., 2006). Constitutive (35S promoter) overexpression of
AtDREB1A in transgenic rice resulted in increased tolerance to drought (Oh
et al., 2005). Transgenic plants were grown in small pots for 4 weeks and
exposed to 4 days of drought followed by re-watering. Survival rate was
measured. In contrast to previously reported reduction in growth, in this
experiment, neither growth inhibition nor visible phenotypic alterations were
noted, despite constitutive expression of DREB gene. Overexpression of two
other OsDREB genes, OsDREB1G and OsDREB2B, also showed signifi-
cantly improved survival rate under water-deficit stress in rice seedling (Chen
et al., 2008).

Overexpression of DREB1A/CFB3, driven by the stress-inducible RD29A
promoter in bread wheat, improved drought tolerance in greenhouse
(Pellegrineschi et al., 2004). Small seedlings (six leaf stage) grown in pots
(5 × 5 cm) of T2 plants were exposed to 10–12 days of withholding water and
re-watering. Survival rate was used to measure tolerance, but no yield was
reported. Transformation of AtDREB1A into peanut (Arachis hypogaea L.)
was reported to improve TE under water-limited conditions (Bhatnagar-
Mathur et al., 2007). T3 plants were grown in pots and water stress was
applied after 28 days. Interestingly, most transgenic events had higher TE
than the wild type under well-watered conditions, and one event showed 40%
improvement than wild-type plants under water stress. While P35S::DREB1A
plants exhibited stunted growth even under control conditions, the

transgenic \(P_{rd29A::DREB1A} \) peanut plants did not show any growth retardation (Bhatnagar-Mathur et al., 2007). In contrast, transgenic potato expressing the same \(P_{rd29A::DREB1A} \) gene showed growth retardation (Behnam et al., 2006). Overexpression of a soybean DREB orthologue, \(GmDREB1 \), in alfalfa (Medicago sativa L.) plants under the control of Arabidopsis Rd29A promoter was tested in greenhouse pot experiment (Jin et al., 2010). Four-week-old plants were watered with NaCl solution (0, 100, 200, 300 and 400 mM) for 60 days at 5-day intervals. The transgenic lines showed improved tolerance to salinity in terms of survival as compared with wild-type plants; however, no biomass production data were reported.

Tomato plants overexpressing the \(AtDREB1B/CBF1 \) under constitutive 35S promoter showed a higher level of proline, as compared with the wild-type plants grown under normal or water-deficit conditions (Hsieh et al., 2002). \(T_1 \) plants, grown in controlled greenhouse conditions, were exposed to water deficit (after 3 months) for 3 weeks and survival rate was calculated. However, severely reduced growth was found in the transgenic tomato plants. Further, the transgenic tomato plants showed a decrease in fruit, seed number, and fresh weight as compared with wild-type plants under normal conditions (Hsieh et al., 2002).

HARDY (HRD), a gene encoding AP2/ethylene response factor (ERF)-like transcription factor (TF) that belongs to the BREB/CRB family, was identified as a gain-of-function mutation in Arabidopsis (Karaba et al., 2007). The \(hrd \) mutant showed abnormally dense root system, increased mesophyll cell layer and enhanced tolerance to drought and salinity (Karaba et al., 2007). Overexpressing of the \(HRD \) gene in rice resulted in increased water-use efficiency (WUE) in controlled greenhouse conditions. Rice plants of \(T_3 \) generation lines were grown in pots under 100% and 70% field capacity. Under control conditions, the transgenic lines showed no growth reduction, an increase in leaf biomass and an increase in bundle sheath cells. The \(HRD \) expression in rice caused significant increases of instantaneous and whole-plant WUE in well-watered and drought conditions, with a very remarkable increase of 100% in absence of drought and a consistent 50% increase under drought stress (Karaba et al., 2007). The efficiency of this approach still needs to be tested for yield under greenhouse and field conditions.

2. Protein kinase

Several studies have suggested that many protein kinases are involved in drought resistance, among them, members of the calcium-dependent protein kinase (CDPK), calcineurin B-like protein-interacting protein kinase (CIPK) and mitogen-activated protein kinase (MAPK) families. Ca\(^{2+}\) cytosolic levels increase rapidly in plant cells in response to environmental stress, including...
drought and salinity (Sanders et al., 1999). This Ca\(^{2+}\) influx is likely to be mediated by a combination of protein phosphorylation/dephosphorylation cascades involving members of the CDPK family. In rice, overexpression of OsCDPK7 (under the control of the 35S promoter) resulted in increased seedling recovery rate after a salt treatment (Saijo et al., 2000). T\(_1\) seedlings (10 days) old treated with 150/200 mM NaCl and transferred again to a normal nutrient solution. The transgenic plants showed normal development and yield. It was suggested that OsCDPK7 underwent post-translational regulation, since the presence of OsCDPK7 was not sufficient to induce expression of stress-associated target genes. Overexpression of three CIPK genes (OsCIPK03, OsCIPK12 and OsCIPK15) enhanced tolerance to cold, drought and salt stress, respectively, in transgenic rice (Xiang et al., 2007). Overexpression of a MAPK family gene OsMAPK5\(\alpha\) in rice leads to increased OsMAPK5\(\alpha\) kinase activity and enhanced tolerance to drought and salt stresses (Xiong and Yang, 2003). Overexpression of another rice MAPK family, OsMAPK44, resulted in increased tolerance to salt stress (Jeong et al., 2006). Recently, overexpression in rice of DSM1 (drought-hypersensitive mutant1), a putative MAPK kinase kinase (MAPKKK) gene, increased the tolerance of the seedlings to dehydration stress (Ning et al., 2010). It was suggested that DSM1 might be a novel MAPKKK functioning as an early signalling component in regulating mechanisms of ROS scavenging in rice.

Expression of a MAPKKK gene was shown to activate an oxidative signal cascade and led to the tolerance to environmental stress in transgenic tobacco. The catalytic domain of Nicotiana protein kinase 1 (NPK1) activated a bypass of BCK1-mediated signal transduction pathway in yeast, which was found to be conserved among different organisms (Banno et al., 1993). NPK1 was reported to be upstream of oxidative pathways inducing expression of heat shock proteins and GST (Kovtun et al., 2000). Constitutive overexpression of the tobacco MAPKKK in maize enhanced the drought tolerance of the transgenic plants (Shou et al., 2004). Under drought conditions, the transgenic plants maintained significantly higher photosynthesis rates and kernel weight as compared with wild-type plants. However, the effect of NPK1 on yield components was less apparent.

3. Nuclear factor Y-B subunit

In Arabidopsis, AtNF-YB1, a nuclear factor Y (NF-Y complex), was found to mediate transcriptional control through CCAAT DNA elements and confer tolerance to abiotic stress when constitutively expressed in Arabidopsis (Nelson et al., 2007). NF-Y is a conserved heterotrimetric complex consisting of NF-YA (HAP2), NF-YB (HAP3) and NF-YC (HAP5) subunits (Mantovani, 1999). An orthologous NF-YB gene was found in maize with
similar response to drought. Transgenic maize lines constitutively overexpressing ZmNF-YB2 showed improved drought tolerance under field conditions (Nelson et al., 2007). Under water-limited conditions, transgenic plants show tolerance to drought based on grain yield and on the responses of a number of stress-related parameters, including chlorophyll content, stomatal conductance, leaf temperature, reduced wilting and maintenance of photosynthesis.

4. NAC proteins

Several NAC [NAM (No Apical Meristem), ATAF1-2 and CUC2 (cup-shaped cotyledon)] domain proteins, which are one of the largest plant TF families (Riechmann et al., 2000), have been reported to be associated with abiotic stresses. Of the 140 putative rice NAC genes, the expression of 40 NAC genes increased with drought or salinity stress (Fang et al., 2008). Twenty of these genes were induced at least twofold with stress treatment and a majority of these form the group III clade of NAC genes, called SNAC or the stress-responsive NACs (Fang et al., 2008). The overexpression of a stress-responsive gene SNAC1 (STRESS-RESPONSIVE NAC 1) in rice significantly enhanced the drought tolerance (22–34% increase in seed setting) of the transgenic plants under severe water-stress conditions at the reproductive stage in the field (Hu et al., 2006). Biomass accumulation at the vegetative stage was improved in rice plants overexpressing SNAC1 under both salinity and drought stress (Hu et al., 2006). The phenotype was partially attributed to increased stomatal closure and ABA sensitivity in the transgenic plants (Hu et al., 2006). Overexpression of OsNAC45 in rice improved tolerance to drought and salt treatments as discussed in more detail in Section 3.5 (LEA gene expression). Recently, the overexpression of OsNAC10 in rice, under the control of the constitutive promoter GOS2 and the root-specific promoter RCc3, improved tolerance to drought and salinity of the transgenic plants at the vegetative stage. However, only the root-specific overexpression of OsNAC10 (RCc3::OsNAC10) significantly enhanced drought tolerance at the reproductive stage, increasing grain yield (25–42%) in the field under drought conditions (Jeong et al., 2010). The yield advantage in the RCc3::OsNAC10 plants was attributed to the larger root diameter in these plants, which were approximately 20% larger than both the wild type and GOS2::OsNAC10 plants (Jeong et al., 2010).

5. Increasing LEA gene expression

Late embryogenesis abundant (LEA) proteins are low-molecular weight proteins that, in molar excess, and synergistically with trehalose, prevent protein aggregation during desiccation or water stress (Goyal et al., 2005).
The overexpression of OsLEA3-1 under the control of a strong constitutive promoters (35S and Actin1) and a stress-inducible promoter (HVA1-like promoter isolated from the upland rice IRAT109) in a drought-sensitive Japonica rice resulted in improved drought tolerance (Xiao et al., 2007). Transgenic rice plants with 35S and HVA1-like promoters displayed improved yields when grown in PVC pipes and under field conditions without yield penalties. The improved yield under drought conditions was primarily due to improved spikelet fertility under stress (Xiao et al., 2007). Spring wheat lines expressing the barley HVA1 gene (under the control of the ubiquitin promoter) tested across multiple years and locations in dry land cultivation yielded better than the untransformed controls (Bahieldin et al., 2005). In an earlier study, wheat lines were taken to the T_4 generation and compared to newly developed lines using the same construct (Sivamani et al., 2000). Yields of the transgenic HVA1 lines were not significantly different than the wild-type and non-transformed control lines under irrigated conditions; however, under dry land conditions, the HVA1 lines produced 7–35% more yield. The yield under water stress was correlated with the amount of HVA1 protein detected in leaf extracts of the transgenic lines (Bahieldin et al., 2005).

Increasing LEA gene expression under stress, and presumably LEA protein abundance, has also been accomplished indirectly, with the overexpression of NAC genes. LEA gene expression under stress may account for improved tolerance to drought and/or salinity stress in plants overexpressing OsNAC5 and OsNAC6 (Takasaki et al., 2010), and OsNAC45 (Zheng et al., 2009). The overexpression of the stress-responsive proteins OsNAC5 and OsNAC6 resulted in enhanced stress tolerance by up-regulating the expression of stress-inducible rice genes such as OsLEA3, although the effects of these proteins on plant growth were different. However, the tolerance of the UBIpro::OsNAC5 transgenic rice plant to salinity was measured in 2-week-old transgenic plants that were grown in 250 mM NaCl for 3 days and then grown for 30 days under normal conditions (i.e. survival rate), and no yield data were presented. The overexpression of OsNAC45 leads to increased LEA3 and PM1 gene expression Zheng et al. (2009). Preliminary assays of the response to drought stress showed that young seedlings overexpressing OsNAC45 had improved survival rates, relative to wild-type controls, 10 days after recovery from a 9.5-h period of root drying (Zheng et al., 2009). Although these hydroponic assays on T_2 generation transgenics are not sufficient to assess the response of the transgenic plants to drought under field conditions, the increased expression of LEA3, taken together with the results of Xiao et al. (2007), provides an incentive to take later generations of these transgenic rice plants to field testing.
6. Aquaporins

Aquaporins are intrinsic membrane proteins that mediate the transport of water, small neutral solutes and CO₂ (Tyerman et al., 2002). The regulatory role of aquaporins in cellular water transport had been demonstrated (Knepper, 1994). The stress-induced expression of the aquaporin, RWC3, a member of the plasma membrane intrinsic protein 1 (PIP1) subfamily, resulted in improved water status of lowland rice (Lian et al., 2004). Four-week-old plants grown hydroponically in nutrient solution were exposed to a osmotic shock treatment of 20% polyethylene glycol (PEG) 6000 for 10 h (Lian et al., 2004). However, transgenic tobacco plants constitutively expressing the Arabidopsis plasma membrane aquaporin PIP1b displayed enhanced growth vigour under well-watered conditions, but the transgenic plants wilted rapidly during water stress (Aharon et al., 2003). A comparison between the results obtained by overexpressing PIP-type aquaporins in tobacco and rice is difficult. In addition to the difference between the constitutive (tobacco) and stress-inducible (rice) expression, two different treatments (osmotic shock vs. gradual dehydration) were applied. Further, transgenic rice plants constitutively overexpressing a barley HvPIP2;1 (a plasma membrane aquaporin) showed more sensitivity (reduction in growth rate) to salinity stress (Katsuhara et al., 2003). T₂ rice plants were grown hydroponically and exposed to 100 mM NaCl after 4 weeks. Although the growth of transgenic rice plants was similar to that of control plants under normal conditions, the growth of the transgenic plants was greatly inhibited and eventually withered and died under a salinity treatment (Katsuhara et al., 2003).

Recently, tomato plants’ constitutive overexpressing of atonoplast SITIP2;2 showed increased cell water permeability and whole-plant transpiration (Sade et al., 2009). The expression of SITIP2;2 resulted in increased transpiration under normal growth conditions, limited transpiration reduction under drought and salt stresses and also accelerate transpiration recovery after stress. Two field experiments of F₁ hybrids of transgenic MicroTom and M82 plants were conducted in commercial net-house. Salinity was applied by irrigation with saline water (80–200 mM NaCl) and in parallel, the same F₁ hybrids were grown under well-watered and water-limited conditions. Transgenic plants showed significant increases in fruit yield, harvest index and plant mass relative to the control under both normal and water-stress conditions (Sade et al., 2009). It was postulated that overexpression of the SITIP2;2 could bypass the stress-induced down-regulation of the endogenous aquaporins genes of the tonoplast and thus prevent the slowdown of tonoplast osmotic water permeability (Sade et al., 2009).
Hormones play a major role in stress signalling. One of the fast responses of plants to soil water stress is the accumulation of ABA in the roots (Thompson et al., 2007), which is transported through the xylem to the shoot (Wilkinson and Davies, 2010) causing stomatal closure reducing water loss via transpiration (Schroeder et al., 2001) and eventually restricting cellular growth. ABA can also be synthesized in leaf cells and transported through the plant (Wilkinson and Davies, 2010). In Arabidopsis, a large number of genes associated with ABA metabolic pathway have been characterized, and genes coding ABA receptors and downstream signal relays have been recently reviewed (Cutler et al., 2010; Huang et al., 2008). However, in crop plants, only one gene involved in ABA metabolism (LOS5/ABA3, a key enzyme in the last step of ABA biosynthesis) has been manipulated in rice with enhanced drought tolerance (Xiao et al., 2009). LOS5 gene was overexpressed under the control of constitutive or drought-inducible promoters and tested in the field. Plants were grown under normal conditions for 1 month and then water was stopped during the initiation of panicle development. The improved yield of the transgenic lines under field conditions was a result of a significant increase in the spikelet fertility (Xiao et al., 2009). While many reports on the development of transgenic plants with improved tolerance to drought or salinity by manipulating the expression of stress-related genes in laboratory or greenhouse conditions are available, only few studies were tested under natural field condition. In tomato, the constitutive overexpression of LeNCED1 (drought-inducible and a rate-limiting enzyme for ABA biosynthesis) resulted in increased ABA accumulation (Thompson et al., 2007). Plants were grown to a four- to five-leaf stage in a controlled environment cabinet in 500-mL free-draining pots and exposed to drought treatment. The constant elevation in ABA level resulted in physiological and morphological changes in the transgenic plants. Under well-watered conditions, plants showed reduction in assimilation rates, leaf flooding and chlorosis, but under water-deficit conditions, these effects were insufficient to reduce biomass production, presumably because of counteracting positive effects on leaf expansion through improvements in water status, turgor and antagonism of epinastic growth (Thompson et al., 2007).

Cytokinins (CKs) have been found linked to a variety of abiotic stresses (Hare et al., 1997). In Arabidopsis, examination of public microarray expression data revealed many genes encoding proteins associated with CK signalling pathways that were differentially affected by various abiotic stresses (reviewed by Argueso et al., 2009). CK is an antagonist to ABA, and the exposure of plants to drought results in decreased levels of CK. Elevated CK levels could promote survival under water-stress conditions, inhibit leaf
senescence and increased levels of proline (Alvarez et al., 2008). The manipulation of endogenous CK levels was effective in delaying senescence (Gan and Amasino, 1997). Isopentenyltransferase (IPT, mediating the rate-limiting step in CK biosynthesis) has been overexpressed in several plant species. However, drought tolerance varied with the type of promoter used to drive IPT expression (Ma, 2008). Recently, transgenic tobacco (N. tabacum) expressing the IPT gene under control of a drought-induced promoter (SARK, senescence-associated receptor kinase) resulted in increased drought tolerance, photosynthetic capacity and yield (Rivero et al., 2007, 2009).

Transgenic Cassava (Manihot esculenta Crantz), expressing IPT under control of a senescence-induced promoter, SAG12, were tested for drought tolerance under field conditions (Zhang et al., 2010). The transgenic cassava plants displayed higher tolerance to drought due to the inhibition of stress-induced leaf abscission and fast recovery from stress. Creeping bentgrass (Agrostis stolonifera) expressing PSAG12::IPT was tested hydroponically using osmotic stress induced by different PEG concentrations (Merewitz et al., 2010). The transgenic plants were able to maintain higher osmotic adjustment, chlorophyll content, WUE and greater root viability under osmotic stress compared with the wild-type plants (Merewitz et al., 2010). However, these results should be taken with caution since the use of PEG to stimulate osmotic stress is artificial, and did not represent the multidimensional response of plants to water deficit under natural conditions.

Jasmonic acid (JA) is involved in plant development and the defence response. Transgenic rice plants overexpressing the Arabidopsis JA carboxyl methyltransferase gene (AtJMT) under the control of the Ubi1 promoter showed increased JA levels in panicles (Kim et al., 2009). Plants were grown in the greenhouse and were subjected to 2 weeks of drought before panicle initiation. The Ubi1::AtJMT plants resulted in significantly grain yield reduction, due to a lower numbers of spikelets and lower filling rates than wild-type plants (Kim et al., 2009). Rice plants overexpressing the ERF, AP37, under the control of the constitutive promoter OsCc1, displayed increased tolerance to drought and high salinity at the vegetative stage (Oh et al., 2009). More importantly, when these transgenic lines were tested in the field, the OsCc1::AP37 plants showed increased grain yield over controls under severe drought conditions, while no significant differences were noted under well-watered conditions (Oh et al., 2009). Overexpression in rice of another ERF gene, a protein TSRF1 that binds to the GCC box, showed enhanced osmotic and drought tolerance in seedlings (Quan et al., 2010). T2 rice seedlings (10 days old) were exposed to osmotic shock (20% PEG for 3 days) or withholding water for 6 days followed by recovery under control conditions. Under normal conditions
the transgenic TSRF1 plants did not show any differences in growth or development. In another experiment, 2-week-old seedlings overexpressing \textit{TERF1} (a tomato ERF protein) were exposed to drought by withholding water for 9 days, or salinity by immersing in 200 mM NaCl. The transgenic plants showed improved survival rate after exposure to drought or salinity (Gao \textit{et al}., 2008). Further study is needed to test the efficiency of this strategy under field experiment and more critical growth phases (i.e. reproductive stage).

Plant hormone crosstalk and the regulation of various hormone-regulated biosynthetic pathways (see Nemhauser \textit{et al}., 2006) during water stress play important roles in abiotic stress adaptation. The homeostatic regulation of phytohormones could play significant roles in the regulation of source/sink relationships and its manipulation could provide a significant avenue for the development of abiotic stress tolerance in plants.

8. The regulation of the stomatal response to stress
Reducing transpiration rates without affecting CO$_2$ assimilation would result in increase WUE and may contribute to improve yields. It was postulated recently that reductions in stomata density and stomatal aperture can reduce transpirational water loss while maintaining sufficient CO$_2$ uptake to sustain biomass and yield under water-deficit conditions (Yoo \textit{et al}., 2009). There are a handful of examples where the modification of a single gene resulted in reduced stomatal aperture and stomatal density, and consequently increasing WUE (reviewed in Yoo \textit{et al}., 2009). These modifications also resulted in improved plant resistance to water-deficit stresses like salinity and drought. Some of these modifications have been tested in crop plants and in some cases, under field conditions: \textit{ERAI} is a negative regulator of the ABA response in \textit{Arabidopsis}, and was found in a screen for hypersensitivity of seed germination to ABA (Cutler \textit{et al}., 1996). \textit{eral} rosettes were slower to wilt under severe water deficit, owing to the smaller stomatal aperture in the mutant plants (Pei \textit{et al}., 1998). The \textit{ERAI} locus is the beta subunit of farnesyltransferase, which adds a farnesyl group to proteins containing a CaaX motif (Andrews \textit{et al}., 2010). \textit{eral} plants, and to a lesser degree in plants expressing a constitutive AtFTB (farnesyltransferase B) hairpin construct, growth and development are impaired, owing to the loss (or reduction) of function of FTB in other aspects of plant development, including meristem organization (Bonetta \textit{et al}., 2000), among others. An agriculturally relevant application FTB down-regulation was accomplished by the use of a stress-inducible promoter, rd29. While early seedling development was impaired in canola plants expressing \textit{rd29 anti-FTB}, yields of the field grown transgenic plants were no different that wild-type controls under
sufficient water conditions (Wang et al., 2005b). Down-regulation of FTB in canola provided improved yield relative to wild-type controls under mild and moderate water-deficit stress conditions in the field (Wang et al., 2005b). The concept of reducing stomatal aperture and transpiration during drought stress was further refined and confirmed by Wang et al. (2009) by using the hydroxypyruvate reductase (HPR1) promoter to drive the expression of an RNAi construct directed against the farnesyltransferase A (FTA) subunit. The HPR1 promoter is up-regulated by drought stress and is preferentially expressed in the shoot tissues. P_{HPR1}::antiFTA transgenic canola seedlings were not impaired in early shoot and root growth, as was the case with P_{rd29}::antiFTB seedlings, and P_{HPR1}::antiFTA plants had no yield drag relative to wild-type controls under water-sufficient conditions in the field (Wang et al., 2009). Under water-deficit conditions, experienced primarily during flowering and pod filling, P_{HPR1}::antiFTA plants yielded 14–16% greater seed than wild-type controls, which experienced yield losses of 20% (Wang et al., 2009). Whether this technology can be applied to crops other than canola is yet to be reported. However, the successful application of SNAC1 overexpression to improving rice yields under drought and salinity stress, by increasing stomatal closure without decreasing CO2 assimilation, shows the concept viability.

Loss of function of the zinc finger protein DST resulted in reduced stomatal aperture and stomatal density, and increased drought and salt tolerance in rice (Huang et al., 2009). While field testing has not been reported for the dst plants, under controlled growth conditions, they retained a higher RWC under soil drying conditions and recovered more rapidly on re-watering than the wild-type control plants (Huang et al., 2009). DST negatively regulates the expression of hydrogen peroxide scavenging enzymes in guard cells, which balances the ROS signalling for stomatal closure that is propagated through the ABA signal. Therefore, in the dst mutant, the ROS signal was less attenuated and stomatal apertures remained smaller than in the wild type. While CO2 assimilation was not measured, Huang et al. (2009) reported that seed yields were not reduced in the dst mutant. Genetic modifications, where stomatal aperture and stomatal density reduce water loss under stress, but do not reduce CO2 assimilation in the absence of stress, are attractive targets for engineering abiotic stress tolerance.

9. Other transcription factors

Although multiple TFs have been well characterized in various plant species, transcriptional reprogramming under drought and stress is not fully understood. Overexpression of the AtMYB2 gene (from Arabidopsis) in rice under the control of an ABA-inducible promoter conferred salt stress tolerance to the transgenic plants, with higher biomass and decreased ions leakage.
(Malik and Wu, 2005). Overexpression of OsWRKY11 (encoding a TF comprising a WRKY domain), under the control of a HSP101 promoter, conferred heat and drought tolerance at the seedling stage (slower leaf wilting and higher survival rate of green parts of plants; Wu et al., 2009).

Recently, it was shown that the constitutive overexpression of two members of a family of bacterial RNA chaperones, CspA (from E. coli) and CspB (from Bacillus subtilis), conferred abiotic stress tolerance to transgenic Arabidopsis, rice and maize (Castiglioni et al., 2008). The transgenic maize plants showed yield benefits of up to 15% (0.75 t/ha) as compared to the non-transgenic controls, under water-stressed environment. Importantly, the observed yield improvements in water-limited field trials were not associated with a yield penalty in non-stressed (high-yielding) environments (Castiglioni et al., 2008). These results suggested that chaperones molecules may be good candidates for abiotic stress enhancement in crop plants.

IV. CONCLUSIONS AND PERSPECTIVES

Developing drought and salinity tolerance crop plants using conventional plant breeding methods had limited success during the past century. New technologies are providing opportunities to address the challenging problem of maintaining high-yield crop production under stressful environmental conditions and changing climates. The information provided by high-resolution transcript profiling, the identification of large-scale specific protein networks and their association with the plant responses to environmental perturbations are allowing the application of a systems-level approach to uncover the bases of plant responses to environmental changes. The application of an integrated approach is of paramount importance because the crops of the future are likely to be stacked with multiple traits (water deficit, nitrogen use efficiency, pathogen challenges, etc.). However, a review of the different transgenic crops produced so far revealed very limited success in producing drought- and salinity-tolerant cultivars through genetic transformation. Most transgenic plants developed with improved tolerance based on the performance of transgenic lines under controlled conditions in growth room or greenhouse, while only few lines were tested under field conditions (Flowers, 2004).

Numerous genes related to plant response to abiotic stress have been identified and characterized (Araus et al., 2008; Wang et al., 2005b). However, the vast majority of these studies were conducted on the model species such as Arabidopsis and tobacco under laboratory conditions (reviewed by Ashraf and Akram, 2009; Pardo, 2010; Umezawa et al., 2006). While for
crops, the reproductive stage in the most critical stage for productivity, in the majority of studies cited here, stress tolerance has been assessed at the initial growth stages, that is, germination and seedling stage, using survival rate as the main trait to represent tolerance to stress. In many of these experiments, artificial extreme conditions were applied (i.e. high salinity, osmotic shock, etc.). Under field conditions, plants have to cope with multiple stresses (as water deficit and heat) for longer periods. Hence, more emphasis should be given to the study of the responses of crop plants to a combination of environmental stresses at the reproductive stage and under field conditions.

ACKNOWLEDGEMENTS

This study was supported by Grant from NSF-IOS-0802112, CGIAR GCP#3008.03, UC Discovery #bio06-10627 and the Will W. Lester Endowment of University of California. Z. P. was supported by Vaadia-BARD postdoctoral Fellowship Award No. FI-419-08 from the United States—Israel Binational Agricultural Research and Development Fund (BARD).

REFERENCES

Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112, 119–123.

ENGINEERING SALINITY AND WATER-STRESS TOLERANCE

Author Query Form

Journal: Advances in Botanical Research, 57
Chapter No.: 12

Dear Author,

During the preparation of your manuscript for typesetting some questions have arisen. These are listed below. Please check your typeset proof carefully and mark any corrections in the margin of the proof or compile them as a separate list. This form should then be returned with your marked proof/list of corrections to Elsevier Science.

Disk use

In some instances we may be unable to process the electronic file of your article and/or artwork. In that case we have, for efficiency reasons, proceeded by using the hard copy of your manuscript. If this is the case the reasons are indicated below:

- Disk damaged
- Incompatible file format
- LaTeX file for non-LaTeX journal
- Virus infected
- Discrepancies between electronic file and (peer-reviewed, therefore definitive) hard copy.
- Other: ...

We have proceeded as follows:

- Manuscript scanned
- Manuscript keyed in
- Artwork scanned
- Files only partly used (parts processed differently:..)

Bibliography

If discrepancies were noted between the literature list and the text references, the following may apply:

- The references listed below were noted in the text but appear to be missing from your literature list. Please complete the list or remove the references from the text.
- Uncited references: This section comprises references which occur in the reference list but not in the body of the text. Please position each reference in the text or, alternatively, delete it. Any reference not dealt with will be retained in this section.

<table>
<thead>
<tr>
<th>Query Refs.</th>
<th>Details Required</th>
<th>Author’s response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au1</td>
<td>Please provide keywords for online.</td>
<td></td>
</tr>
<tr>
<td>Au2</td>
<td>Please spell out the abbreviations "RWC and JA" if necessary.</td>
<td></td>
</tr>
<tr>
<td>Au3</td>
<td>As per in-house style "CAT, GST, DREB, NAC" have been italicized when referred to as a gene. Please confirm whether they need to be italicized in other occurrences also.</td>
<td></td>
</tr>
<tr>
<td>Au4</td>
<td>Please check the edits made in the sentence "Transgenic rice..."</td>
<td></td>
</tr>
<tr>
<td>Au5</td>
<td>Please check the edits made in the sentence "The yeast gene..."</td>
<td></td>
</tr>
<tr>
<td>Au6</td>
<td>Please provide the appropriate section number in place of "Section 3.5".</td>
<td></td>
</tr>
<tr>
<td>Au7</td>
<td>Please check the edits made in the sentence "Recently, tomato..."</td>
<td></td>
</tr>
<tr>
<td>Au8</td>
<td>Please provide publisher details for this reference.</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Au9</td>
<td>Please check whether the inserted journal name is appropriate in this reference.</td>
<td></td>
</tr>
<tr>
<td>Au10</td>
<td>Please provide the volume number and page range for this reference.</td>
<td></td>
</tr>
<tr>
<td>Au11</td>
<td>Please provide the volume number and page range for this reference.</td>
<td></td>
</tr>
<tr>
<td>Au12</td>
<td>Please check the edit made in the author's name for this reference.</td>
<td></td>
</tr>
<tr>
<td>Au13</td>
<td>Please check the running head.</td>
<td></td>
</tr>
</tbody>
</table>