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With recent advancements in DNA-chip technology, requisite software
development and support and progress in related aspects of plant molecular
biology, it is now possible to comprehensively analyze the expression of
complete genomes. Global transcript profiling shows that in plants, salt-stress
response involves simultaneous up and downregulation of a large number of
genes. This analysis further suggests that apart from the transcripts that
govern synthesis of osmolytes and ion transporters, two candidate systems
that have attracted much of the attention thus far, transcripts encoding for
proteins related to the regulation of transcriptional and translational machi-
neries have a distinct role in salt-stress response. In particular, induction of
transcripts of specific transcription factors, RNA-binding proteins, ribosomal
genes, and translation initiation and elongation factors has recently been
noted to be important during salt stress. There is an urgent need to examine
cellular functionality of the above putative salt-tolerance-related genes emer-
ging from the transcriptome analysis.

High soil salinity, contributed largely by NaCl, is one of
the important environmental factors that limits distribu-
tion and productivity of major crops. Salinity affects
approximately 20% of world’s arable land and appr-
oximately 40% of irrigated land to various degrees.
Transgenic research provides much-needed flexibility in
manipulation of crops by altering the expression levels of
native genes or by incorporating alien genes for a desired
trait, in a relatively shorter time-frame. In the past one
decade of research, production of salt-stress tolerant trans-
genic plants by genetic engineering has been claimed in
over 100 research publications (Grover et al. 2003).

Salt-stress response is shown to encompass large
number of genes, including genes that show pleiotropic
effects (Yang and Yen 2002). These genes are linked to
different pathways and processes such as stress percep-
tion and signaling, leading to molecular, biochemical,
cellular, physiological, and morphological adaptations
to finally the whole-plant response (Flowers 2004,
Bartels and Sunkar 2005, Chinnusamy et al. 2005,
Vinocur and Altman 2005). Different stress-regulated
genes may have cumulative or exclusive roles in salt
tolerance. Osmotic stress and Naþ stress are considered
to be the two major components of the plant salt-stress
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response. Salinity reduces the ability of plants to take up
water thus leading to reduction in growth rate, due to
hormonal signal generated by the roots (Munns 2002).
Osmolytes like proline, glycine-betaine, trehalose, and
sugar alcohols such as mannitol and sorbitol that
are abundantly produced and accumulated in salt-
treated cells represent a critical component of salt-stress
responses. These compounds are proposed to work
through lowering the osmotic potential of cells or by
protecting various cellular structures and proteins during
stress. Naþ-specific biochemical perturbations further
hamper the growth processes. Ion transport (influx and
efflux) and maintenance of ionic homeostasis employing
transporters responsible for salt uptake, exclusion, long-
distance transport, and compartmentalization have also
emerged as a crucial input in plant salt-stress response
(Apse et al. 1999, Blumwald 2000, Blumwald et al. 2000,
Qiu et al. 2002, Qiu et al. 2003, Rus et al. 2004, Serrano
and Rodriguez 2002, Yamaguchi et al. 2003, Zhang and
Blumwald 2001, Zhang et al. 2001). Other transport pro-
teins implicated in salt-tolerance acquisition include
aquaporins and amino acid transporters. Essentially, our
current understanding of the response of plants to salt
stress encompasses firstly the relatively quicker osmotic
function and then the somewhat delayed increase of Naþ

function. On the basis of this understanding, enzymes that
catalyse rate-limiting steps in the biosynthesis of compa-
tible osmolytes, proteins that protect membrane integrity
and control osmotic and/or ion homeostasis and reactive
oxygen species (ROS) are considered to be the examples
of salt-stress-tolerance effectors (Singla-Pareek et al. 2003,
Sottosanto et al. 2004, Taji et al. 2004).

With the availability of complete Arabidopsis thaliana
and Oryza sativa (and from large number of other plant
species in the form of unpublished database) genome
sequence information, newer and exciting directions are
emerging for unearthing details on stress biology. Salt-
stress-related transcriptome analysis has been undertaken
by a large number of workers (Kawasaki et al. 2001, Kreps
et al. 2002, Oono et al. 2003, Rabbani et al. 2003, Sahi
et al. 2003, Seki et al. 2002). Random sequencing of salt-
stress cDNA libraries has generated vast database on salt-
stress-related expressed sequence tags (ESTs) (Richmond
and Somerville 2000, Rudd 2003). In specific cases,
cDNAs have been normalized or subtracted to specifi-
cally address the salt-regulated clones (Gong et al. 2001,
Reddy et al. 2002, Sahi et al. 2003). Microarray and
macroarray-based transcriptional profiling has given
quantitative information about the expression levels of a
large number of genes simultaneously. Transcriptional
profiling data from A. thaliana and O. sativa suggest
that metabolic readjustments is the hallmark of the
salt-stress response (Kawasaki et al. 2001, Kreps et al.

2002, Oono et al. 2003, Rabbani et al. 2003, Seki et al.
2002, Sottosanto et al. 2004). Further progress on the
transcripts associated with salt tolerance has been
paved using the comparative genomics approach.
Comparative stress genomics essentially means that var-
ious commonalities and differences in expression pat-
terns of different genes relative to populations that differ
in stress tolerance are scored. This approach appears
highly valuable for unveiling the key genetic contribu-
tors to the complex physiological processes involved in
salt-tolerance trait (Bressan et al. 2001). Taji et al.
(2004) noted that fewer number of genes are induced
by 250 mM NaCl stress in Thellungiella halophila (salt
cress; a wild salt-tolerant relative of Arabidopsis), in
contrast to Arabidopsis. It was emphasized that stress
tolerance of salt cress may be due to constitutive over-
expression of several genes that function in stress toler-
ance and that are stress inducible in Arabidopsis.
Sottosanto et al. (2004) showed that Atnhx1 knockout
transcriptome responded appreciably different from the
wild-type Arabidopsis plants both under unstressed and
salt-stressed conditions. The latter work showed that
apart from ion homeostasis, AtNHX1 has important
role to play in intracellular vesicular trafficking, protein
targeting and several other cellular processes. Larger
spectrum of gene expression changes noted between
Atnhx1 knockout mutant and wild-type plants by
Sottosanto et al. (2004) emphasize that salt-sensitive
and tolerant phenotypes differ markedly in their genetic
machinery. An important conclusion that emerged from
the comparison of transcription between Atnhx1 and
wild-type Arabidopsis plants is that changing levels of
a single protein (AtNHX1 in this case) can affect the
expression of a large range of plant genes. It would be
worthwhile to unveil how the transcriptomes have been
affected in other single-protein alteration experiments
done so far, but unfortunately this has not been analyzed
to a great extent. Kawasaki et al. (2001) also observed that
the gene expression response in salt-stress-related con-
trasting rice plants is both qualitative and quantitative.
Sahi et al. (2003) provided further evidence that a large
number of constitutive and stress-regulated gene expres-
sion differences underlie the response of three contrasting
rice types to salt stress. Very recently, Shiozaki et al.
(2005) also echoed essentially the same conclusions, in
showing that contrasting rice types differed in expression
of a large number of cDNA clones.

Detailed work on cDNA clones/ESTs reported from
salt-stressed libraries showed that transcripts upregulated
in salt stress belong to a variety of functionality classes
such as RNA metabolism, transcription, hormone-
related functions, signaling, translational machinery,
transport proteins, osmoprotectants, ROS scavengers,
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cell death and ageing, photosynthesis, general metabo-
lism, protein transport/turnover, metal-binding proteins,
protein–protein interactions and folding, defense-related
functions, other stress proteins, and several unclassified
proteins. Table 1 lists specific examples of the proteins
encoded by transcripts from the above-mentioned cate-
gories that have been noted to be associated with the
response of cells to salt stress. From the large body of
work emanating from transcriptional profiling data, it
appears that apart from the biosynthesis of osmolytes
and ion transporters, proteins/pathways linked with
maintenance and selective action of transcriptional
and translational functions are associated with plant
salt-stress response. Selected examples of this category
include transcription factors (TFs), RNA helicase pro-
teins, glycine-rich (GR) RNA-binding protein (RBPs)
(GR-RBP), protein translation and turnover components
(eukaryotic translation initiation and elongation factors,
proteases and protease inhibitors), and chaperones and
foldases (like heat shock proteins and peptidyl prolyl
cis-trans isomerases).

Major alterations in transcriptional and post-transcrip-
tional activities are noted to accompany response of
plants to salt stress. The salt-stress response is under
active genetic control, thus involving activation of large
number of specific genes concomitant to the repression
in activity of a large number of house-keeping genes.
Battery of regulatory molecules such as TFs (including
different classes of DNA-binding proteins like dehydra-
tion-response element/C-repeat, Myb and Myc proteins,
and proteins containing bZIP, Zn-finger, or AP2 domains)
appears to be principal genetic determinants in salt-stress
transcriptional profiles (Kawasaki et al. 2001,
Mukhopadhyay et al. 2004, Oono et al. 2003, Rabbani
et al. 2003, Sahi et al. 2003, Sottosanto et al. 2004). Basic
helix loop helix (bHLH) and myeloblastosis TFs were
reported to function as transcriptional activators of absci-
sic acid signaling in plants (Abe et al. 2003). MCM1,
AGAMOUS, DEFICIENS, SRF (MADS) box TFs appear
important in salt-stress networking in plants (Cooper
et al. 2003). The functional validation of the role of
several different TFs in imparting stress tolerance has
been done employing transgenic plants in specific
instances (Jaglo-Ottosen et al. 1998, Kasuga et al. 1999,
Kasuga et al. 2004, Kim et al. 2001, Kim et al. 2004, Park
et al. 2001). Transcript synthesis, stability, and localiza-
tion are emerging as an essential component of plant-
stress responses. RNA helicase-like protein has been
shown to be an early regulator of plant-chilling and
freezing tolerance in Arabidopsis (Gong et al. 2002). It
was recently reported that mutant plants lacking DEAD
box RNA helicase are heat sensitive. Mutation in this
gene caused change in total cellular levels of several

cold responsive gene transcripts (Gong et al. 2005).
Transgenic tobacco plants over-expressing pea DNA
helicase showed higher accumulation of Naþ in the old
leaves and negligible levels in seeds of T1 plants as
compared with wild-type plants (Sanan-Mishra et al.
2005). RBPs are turning out to be an important aspect
of plant salt-stress response. Most of the stress cDNA
libraries showed redundancy of genes corresponding to
various RBPs including GR and Zn-finger RBPs, splicing
factors, and several other snRNPs and hnRNPs (Agarwal
and Grover 2005). SR-rich-splicing factors have been
implicated in salt tolerance (Forment et al. 2002).
Transcripts for GR-RBP were shown to be upregulated
by low-temperature stress, and the germination and seed-
ling growth of the loss-of-function mutants of Arabidopsis
GR-RBP was retarded. On other hand, over-expression of
this protein in Arabidopsis showed earlier germination
and better seedling growth, and the transgenic plants
were more freezing tolerant (Kim et al 2005).

Regulation of the translational machinery also appears
to be an important component of the cellular-stress
response (Bailey-Serres 1999). Water deficit induces rapid
changes in the cell polyribosomes. A putative regulatory
role of specific polysome-associated proteins in stress-
induced translational control has been proposed. Form-
ation of mRNP (messenger ribonucleoprotein) complexes
and polysomal retention of transcripts for ribosomal pro-
teins RPS14, RPS16, and RPL23 were correlated with desic-
cation response in Tortula ruralis (Wood and Oliver 1999,
Wood et al. 2000). Active conservation of the polyribo-
somes during desiccation has been associated with high-
level stress tolerance in plants (Bartels and Salamini 2001,
Bensen et al. 1988). Regulation of the protein degradation
machinery is thought to play critical role(s) in plant-stress
response (Khedr et al. 2003). Redundancy noted for dif-
ferent classes of proteases and protease inhibitors in salt
and water-stress libraries would indicate that regulated
protein degradation is an important stress response in
plants. Because denatured proteins are toxic to the cells,
they need immediate removal. E3 ubiquitin ligase and
the really interesting new gene (RING) finger proteins
are the key components of the ubiquitin proteasome path-
way (Freemont 2000, Moon et al. 2004). The expression
of genes encoding RING finger protein was rapidly
increased during stress, and these are thought to be
involved in rapid degradation of regulatory proteins
(Lee et al. 2001, Salinas-Mondragon et al. 1999).
Representation of peptidyl prolyl cis-trans isomerases
(PPiases), protein disulphide isomerases (PDiases), and
chaperones (Hsp, DnaK, DnaJ) encoding transcripts along
with their salt-regulated expression shows that protein fold-
ing is important parameter in salinity. Selected Hsp have
been shown to be important for imparting salt tolerance in
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plants (Sun et al. 2001). Likewise, there is evidence that
transcripts encoding PPiase are regulated by salt stress in
maize and bean plants (Marivet et al. 1994).

Transgenic plants overexpressing genes involved in
osmolyte production showed enhanced salt-stress toler-
ance. Ectopic over-expression of ion transporters
resulted in a novel way of sequestering excess Naþ

levels to cause increased salt-tolerant phenotype.
Transcriptome analysis suggests that genes associated
with regulation of RNA and protein metabolism appear
to have an utmost significance in regulating salt-stress
tolerance (Fig. 1). Microarray analysis has clearly shown
that transcripts encoding RBPs, helicases, cyclophilins, F-
box proteins, dynamin-like proteins, and ribosomal pro-
teins are linked to salt-stress response in Arabidopsis
(Sottosanto et al. 2004). Thus, there appears to be a coor-
dinated action of several ribosomal proteins, RBPs, and
translation initiation and elongation factors along with
several accessory proteins that regulate stress-associated
translation in controlling various cellular adaptations dur-
ing salt stress. According to Fedoroff (2002), RNA meta-
bolism and modification appears to be an important and
well-conserved stress-response pathway in yeast, animal
as well as in plant systems. Further characterization of
these genes by analyzing their protein expression and by

altering their levels of expression in varied homologous
and heterologous systems and through analysis of requi-
site knockout mutants is the need of the hour.
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